院长信箱 | 中文 | EN
您所在的位置:首页  师资队伍  教师详情

Ali Reza Kamali

更新时间: 2019-01-18 13:58:27 阅读次数:1864
作者:


姓   名:

阿里·卡马里

性  别:


出生年月:

1977年2月

国  籍:

英  国 (伊 朗 裔)

毕业院校:

伊朗科学技术大学(博士)

所学专业:

材料科学与工程

工作单位:

英国 剑桥大学 材料科学与冶金系

E-mail :

ali@smm.neu.edu.cn, a.r.kamali@cantab.net

Homepage

http://faculty.neu.edu.cn/smm/ali/dbdx.html

教育背景

· 2003-2007伊朗科学技术大学材料科学与工程,工学博士,“最优秀博士生”。

· 2000-2002伊朗科学技术大学材料科学专业理学硕士排名1/12

· 1996-2000伊朗萨汉德技术大学材料科学与冶金专业理学学士,排名1/20。

工作经历:

· 2016.9-今中国东北大学冶金学院,“双百计划”特聘教授。

· 2015-至今,英国剑桥硅时代有限公司,总经理。

· 2014-至今,剑桥大学,高级副研究员。

· 2009-2014,剑桥大学,助理研究员。

· 2009,印度纳米科技公司,项目负责人。

· 2007-2009伊朗伊斯法罕技术大学副教授、科研主任。

· 2004-2007先进材料研究中心,项目负责人。

社会兼职

期刊审稿人:

· Carbon (Elsevier),

· Journal of Alloys and Compounds (Elsevier),

· Journal of Materials Processing Technology (Elsevier)

· Materials Science & Engineering B (Elsevier),

· Journal of membrane science (Elsevier),

·

·

·

·

· 英国皇家学会会员

· 英国皇家学会熔盐讨论分会理事

· 伊朗冶金工程学会会员

其他经历

授课经历

· 剑桥大学材料化学、电化学、热分析与传热传质、能量采集与碳纳米材料、表征技术、纳米材料与纳米电化学

指导学生经历

Supervision of under graduate, master and PhD students and academic visitors at University of Cambridge and other Universities.

主要成就

· 研究开发了一种通过熔盐电化学法大规模制备高品质石墨烯的新技术,目前,该技术已通过剑桥大学转让给Applied Graphene Materials Plc公司。

· 发明了一种在压下用纳米碳管制备纳米金刚石晶体的新技术该技术已经授权给Element Six

· 发明了一种生产纳米硅粉的绿色冶炼技术并以此组建了一家创业公司,并任公司总经理。

· 与一家英国知名企业合作,开发了一种石墨烯-硅纳米复合材料,可作新型锂离子电池阳极材料。


2010-2020年期刊论文(https://www.researchgate.net/profile/Ali_Kamali7/research

2020 已发表5篇论文,累计影响因子14.7

1.A Rezaei, B Kamali, A R Kamali*. Correlation between morphological, structural and electrical properties of graphite and exfoliated graphene nanostructures, Measurement, 150 (2020) 107087. (IF=2.79, Cited: 0)

2.K. Xie, A.R. Kamali*, Z. Shi, Q. Sun. Green electro-synthesis of Li2Fe3O5 microcrystals as high performance anode material for lithium-ion batteries, Journal of Electroanalytical Chemistry, 863 (2020) 114061. (IF = 3.2)

3.W Zhu, A.R. Kamali*. Green molten salt synthesis and Li‐ion storage performance of sodium dimolybdate, Journal of Alloys and Compounds, 831 (2020) 154781. (IF = 4.17)

4.L Labiadh, A R Kamali*. Textural, structural and morphological evolution of mesoporous 3D graphene saturated with methyl orange dye during thermal regeneration, Diamond and Related Materials, 103 (2020) 107698. (IF = 2.29)

5.L Tong, Q Zhao, A R Kamali, W Sand, H Yang. Effect of Graphite on Copper Bioleaching from Waste Printed Circuit Boards, Minerals, 10 (2020) 79. (IF = 2.25)

  

2019 (共8篇论文,累计影响因子41.2

  1. K Xie, A R Kamali*. Electro-reduction of      hematite using water as the redox mediator, Green Chemistry, 21 (2019) 198-204. (IF=9.4, Cited: 3)

7.K Xie, A R Kamali*. Molten salt electrochemical production and in situutilization of hydrogen for iron production, International Journal of Hydrogen Energy, 44 (2019) 24353-24359. (IF=4.08, Cited: 0)

8.L Labiadh, A R Kamali*. 3D graphene nanoedges as efficient dye adsorbents with ultra-high thermal regeneration performance, Applied Surface Science, 490 (2019) 383-394. (IF=5.15, Cited: 0)

  1. A R Kamali*, S H Shishavan, M N      Samani, A Rezaei, K B Kim. Ultra-fast shock-wave combustion synthesis of      nanostructured silicon from sand with excellent Li storage performance, Sustainable Energy & Fuels, 3      (2019) 1396-1405. (IF=4.9, Cited: 0)

  2. A R Kamali*, J Yang,Q Sun. Molten salt conversion      of polyethylene terephthalate waste into graphene nanostructures with high      surface area and ultra-high electrical conductivity.Applied Surface Science, 476 (2019) 539-551. (IF=5.15, Cited: 1)

  3. Z He,Q Sun, K Xie, P Lu, Z Shi,A R Kamali*. Reactive molten salt synthesis of natural      graphite flakes decorated with SnO2 nanorods as high      performance, low cost anode material for lithium ion batteries, Journal of Alloys and Compounds,      792 (2019) 1213-1222. (IF=4.17, Cited: 1)

  4. Z He,Q Sun, Z Shi,K Xie, A R Kamali*. Molten salt synthesis of oxygen-deficient      SnO2 crystals with enhanced electrical conductivity,      Applied Surface Science, 465 (2019) 397-404.      (IF=5.15, Cited: 1)

  5. L Labiadh, S. Ammar, A R      Kamali. Oxidation/mineralization of AO7 by electro-Fenton process      using chalcopyrite as the heterogeneous source of iron and copper      catalysts with enhanced degradation activity and reusability, Journal of Electroanalytical Chemistry,      853 (2019) 113532. (IF=3.2, Cited: 0)

  

2018 4篇论文,累计影响因子9.9,在SCI中被引用12

14.A. Rezaei, A. R. Kamali*. Green production of carbon nanomaterials in molten salts, mechanisms and applications,Diamond & Related Materials, 83 (2018) 146-161. (IF=2.56, Cited: 3)

  1. Kaya H, Bulut O, Kamali.      AR, Ege D, L-Arginine modified      multi-walled carbon nanotube/sulfonated poly(ether ether ketone)      nanocomposite films for biomedical applications, Applied Surface      Science, 444 (2018) 168-176.      (IF=5.15, Cited: 5)

  2. F. Liu, X. Zhong, J. Xu, A. Kamali, Z.      Shi, Temperature Dependence on Density, Viscosity, and Electrical      Conductivity of Ionic Liquid 1-Ethyl-3-Methylimidazolium Fluoride, Applied Sciences, 8 (2018) 356.      (IF=2.217, Cited:2)

  3. M.R. Kamali, A.R. Kamali, Preparation of      borax pentahydrate from effluents of iron nanoparticles synthesis process,      AIMS Energy 6 (2018) 1067.      (IF=Pending, Cited:2)

  

2017 5篇论文,累计影响因子28.98,在SCI中被引用46

18.A. R. Kamali*, H.K. Kim, K.B. Kim, V. R. Kumar, D. J. Fray, Large scale green production of ultra-high capacity anode consisting of graphene encapsulated silicon nanoparticles, Journal of Materials Chemistry A, 5(2017) 19126-19135. (IF=10.733, Cited: 12)

19.A. R. Kamali*, Nanocatalytic conversion of CO2 into nanodiamonds, Carbon, 123 (2017) 205-215. (IF=7.46, Cited: 6)

20.A. R. Kamali*, Scalable fabrication of highly conductive 3D graphene by electrochemical exfoliation of graphite in molten NaCl under Ar/H2 atmosphere, Journal of Industrial and Engineering Chemistry, 52 (2017) 18-27. (IF=4.978, Cited: 12)

21.D. Ege, I. Duru, A. R. Kamali, A. R. Boccaccini, Nitride, Zirconia, Alumina, and Carbide Coatings on Ti6Al4V Femoral Heads: Effect of Deposition Techniques on Mechanical and Tribological Properties, Advanced Engineering Materials, 19 (2017): 49-54. (IF=2.9, Cited: 2)

22.Duygu Ege, Ali Reza Kamali, Aldo R. Boccaccini, Graphene Oxide/Polymer-Based Biomaterials, Advanced Engineering Materials, 19 (2017): 16-34. (IF=2.906, Cited: 14)

2016 10篇论文,累计影响因子70.568,在SCI中被引用157

  1. A. R. Kamali*,      Eco-friendly production of high quality low cost graphene and its      application in lithium ion batteries, Green Chemistry 18 (2016)      1952-1964. (IF=9.4, Cited: 30)

  2. H.K. Kim, A.      R. Kamali*, K.C. Roh, K.B. Kim, D. J. Fray, Dual coexisting      interconnected graphene nanostructures for high performance supercapacitor      applications,Energy &      Environmental Science, 9(2016) 2249-2256.(IF=33.25, Cited: 44)

  3. A. R. Kamali*, D. J. Fray, Electrochemical      interaction between graphite and molten salts to produce nanotubes,      nanoparticles, graphene and nanodiamonds, Journal of Materials Science 51      (2016), 569-576. (IF=3.44, Cited: 11)

  4. C. Yerlikaya1, N. Ullah, A. R. Kamali*,      R. V. Kumar,Size-controllable      synthesis of lithium niobate nanocrystals using modified Pechini polymeric      precursor method, Journal of Thermal Analysis      and Calorimetery, 125 (2016)17-22.      (IF=2.47, Cited: 6)

  5. A. R.      Kamali*, J.      Feighan, D. J. Fray, Towards large scale preparation of graphene in molten      salts and its use in the fabrication of highly toughened alumina      ceramics, Faraday Discussions, 190 (2016) 451-470. (IF=3.58, Cited:      6)

  6. İ. Duru, D.u Ege, A.R. Kamali, Graphene Oxides for Removal of Heavy and      Precious Metals from the Wastewater, Review Paper, Journal      of Materials Science, DOI 10.1007/s10853-016-9913-8.(IF=2.59, Cited: 43)

  7. T.H. Okabe, A.R. Kamali      et al., Advancement in knowledge of phenomena and processes: general      discussion, Faraday Discussions,      190(2016) 525-549. (IF=3.712, Cited:1)

  8. T.H. Okabe, A. Kamali et      al., Benefits to energy efficiency and environmental impact: general      discussion, Faraday Discussions      190(2016) 161-204. (IF=3.712)

  9. T.H. Okabe, A. Kamali et      al, Developments for nuclear reactors and spent fuels processing: general      discussion, Faraday Discussions      190(2016) 399-419. (IF=3.712)

  10. Kuzmina, A.R. Kamali et      al., Improvements of energy conversion and storage: general discussion, Faraday Discussions 190(2016)      291-306.(IF=3.712, Cited:2)

2015 5篇论文,累计影响因子17.55SCI被引用45

  1. A. R. Kamali*,      D. J. Fray, A possible scalable method for the synthesis of Sn-containing      carbon nanostructures, Materials      Today Communications      2 (2015) 38-48. (Impact Pending, Cited:6)

  2. A. R. Kamali*, D.J. Fray,      Large-scale preparation of graphene by high temperature insertion of      hydrogen into graphite, Nanoscale 7 (2015), 2015, 11310-11320. (IF= 7.39, Cited=33)

  3. A. R. Kamali*, D.      J. Fray, Preparation of nanodiamonds from carbon nanoparticles at atmospheric      pressure, Chemical Communications 51 (2015), 5594-5597.(IF=6.83, Cited=22)

  4. M. Nazarian-Samani, A. R. Kamali, M. Nazarian-Samani, S. F.      Kashani-Bozorg, Evolution and Stability of a Nanocrystalline Cu3Ge      Intermetallic Compound Fabricated by Means of High Energy Ball Milling and      Annealing Processes, Metallurgical and Materials Transactions A 46 (2015) 516-524.(IF= 1.73, Cited=2)

  5. H.S. Chen, P. Yang,      Z.H. Khan, J.M. Wu, G. Li, A.R. Kamali, Quantum Dots and Nanoparticles in Light Emitting      Diodes, Displays, and Optoelectronic Devices, Journal of Nanomaterials 2015, ID      371679. (IF=1.60, Cited: 1)

2014 8篇论文,累计影响因子19.64,在SCI中被引用84

  1. A.R.Kamali*,      D.J.Fray, Towards      large scale preparation of carbon nanostructures in molten LiCl, Carbon 77 (2014), 835-845.(IF=6.19, Cited: 17)

  2. A.R.Kamali*, D.J.Fray, Preparation of lithium niobate particles via reactive      molten salt synthesis method, Ceramics International40 (2014), 1835-1841. (IF=2.67,      Cited: 29)

  3. A.R.Kamali*, G.Divitini, C.Ducati, D.J.Fray, Transformation of molten SnCl2 to SnO2      nano-single crystals, Ceramics International 40 (2014),      8533-8538. (IF=2.67, Cited: 6)

  4. M. Eskandari, A. Zarei-Hanzaki, J.A. Szpunar, M.A. Mohtadi-Bonab, A.      R. Kamali, M.Nazarian Samani, Microstructure evolution and mechanical behavior of a      new microalloyed High Mn austenitic steel during compressive deformation, Materials      Science and Engineering: A 615(2014) 424–435.      (IF=2.57, Cited: 11)

  5. M. Nazarian-Samani, A.R. Kamali, M. Nazarian-Samani, Study on solid state reactions of nanocrystalline      Cu-Ge alloys upon mechanical alloying and annealing, Powder      Metallurgy 57 (2014), 119-126. (IF=0.77, Cited: 5)

  6. M.Nazarian-Samani, R. Mobarra, A. R. Kamali, M.      Nazarian-Samani, Structural Evolution of Nanocrystalline      Nickel-Tungsten Alloys Upon Mechanical Alloying with Subsequent Annealing, Metallurgical      and Materials Transactions A 45 (2014), 510-521. (IF=1.73, Cited: 7)

  7. A. R. Kamali*, Thermokinetic characterisation of tin(II) chloride, Journal of      Thermal Analysis and Calorimetry118 (2014) 99-104. (IF=2.04, Cited: 5)

  8. M. Eskandari, A. Z arei-Hanzaki,A. R. Kamali, M. A.      Mohtadi-Bonab, J. A. Szpunar, Strain hardening during hot compression      through planar dislocation and twin-like structure in a low-density      high-Mn steel, Journal of Materials Engineering and Performance 23 (2014)3567-3576. (IF=1.0, Cited: 4)

2013 2篇论文,累计影响因子8.32,在SCI中被引用40次)

  1. A. R. Kamali*, D. J. Fray, Molten salt corrosion of graphite as a possible way to      make carbon nanostructures, Carbon 56 (2013) 121-131.      (IF=6.19, Cited: 37)

  2. M. Nazarian-Samani, H. Abdollah-Pour, O. Mirzaee, A. R. Kamali,      M. Nazarian-Samani, Effects of Ni addition on the microstructure and      properties of nanostructured copper-germanium alloys, Intermetallics      38 (2013) 80-87. (IF=2.13, Cited: 3)

2012 5篇论文,累计影响因子14.03,在SCI中被引用56

  1. A.R. Kamali*, D.J. Fray, Solid phase growth of tin oxide nanostructures, Materials      Science and Engineering B 177 (2012) 819– 825. (IF=2.17, Cited: 13)

  2. A.R. Kamali*, G. Divitini, C. Schwandt, D. J. Fray, Correlation between microstructure      and thermokinetic characteristics of electrolytic carbon nanomaterials, Corrosion      Science 64 (2012) 90–97. (IF=4.42, Cited: 15)

  3. A.R. Kamali*, C. Schwandt, D. J. Fray, On the oxidation of electrolytic carbon      nanomaterials, Corrosion Science 54 (2012) 307–313. (IF=4.42,      Cited: 14)

  4. M. Nazarian-Samani, A. R. Kamali, M. Nazarian-Samani, R.      Mobarra, S. Naserifar, Thermokinetic study on the phase evolution of      mechanically alloyed Ni–B powders, Journal of Thermal Analysis and      Calorimetery 107 (2012) 265–269. (IF=2.04, Cited: 2)

  5. S. Rehman, N. Ullah, A.R. Kamali*, K. Ali, C. Yerlikaya,      H. Rehman, Study on the thallium(III) adsorption onto multiwall carbon      nanotubes, New Carbon Materials 27(2012) 409-415.      Abstracted in Carbon 55 (2013) 375. (IF=0.98, Cited: 12)

2011 (共3篇论文,累计影响因子5.04SCI被引用166次)

  1. A.R. Kamali*, C. Schwandt, D. J.      Fray, Effect of the graphite electrode material on the characteristics, Materials      Characterization 62 (2011) 987-994. (IF=1.84, Cited: 19)

  2. A.R. Kamali*, D. J. Fray, C.      Schwandt, Thermokinetic characteristics of lithium      chloride. Journal of Thermal Analysis and Calorimetery      104 (2011) 619–26. (IF=2.04, Cited: 21)

  3. A.R. Kamali*, D.J. Fray,      Tin-based materials as anode materials for lithium ion batteries: A      review, Reviews on Advanced Materials Science 27(2011) 14-24.      (IF=1.16, Cited: 139)

2010 7篇论文,累计影响因子12.167,在SCI中被引用105

  1. A.      R. Kamali*, D. J. Fray, Review      on carbon and silicon based materials as anode materials for lithium ion      batteries, Journal of New Materials for Electrochemical Systems      13(2010) 147–60. (IF=0.51, Cited: 60)

  2. A.      R. Kamali*, M. Hadi, J.      Khalil-Allafi, A.R. Ebrahimi, A Process for Production of a      Niobium-containing TiAl Based Alloy. Canadian Metallurgical Quarterly      49 (2010) 171-178. (IF=0.51, Cited:0)

  3. M. Nazarian Samani,      A. Shokuhfar, A.R. Kamali, M. Hadi, Production of a nanocrystalline      Ni3Al-based alloy using mechanical alloying, Journal of Alloys and      Compounds, Journal of Alloys and Compounds 500 (2010) 30–33.      (IF=2.999 Cited: 11)

  4. M. Nazarian Samani, A.      R. Kamali, Investigation on hot workability and mechanical properties      of modified IC-221M alloy, Journal of Alloys and Compounds 492      (2010) 196–200. (IF=2.999, Cited: 2)

  5. M. R. Farhang, A.      R. Kamali, M. Nazarian-Samani, Effects of mechanical alloying on the      characteristics of a nanocrystalline Ti–50 at. %Al during hot pressing      consolidation, Materials Science and Engineering B 168 (2010)      136–141. (IF=2.17, Cited: 23)

  6. M. Nazarian-Samani, A.      R. Kamali, R. Mobarra, M. Nazarian-Samani, Phase transformations of      Ni-15 wt. % B powders during mechanical alloying and annealing, Materials      Letters 64 (2010) 309–312. (IF=2.49, Cited: 12)

  7. M. Babapour Naseri, A.      R. Kamali, S. M. M. Hadavi, Chemical Synthesis of Tungsten–Copper      Nanocomposite Powder, Russian Journal of Inorganic Chemistry      55(2010) 167–173. (IF=0.489, Cited: 3)


地址:辽宁省沈阳市和平区文化路三号巷11号 | 邮编:110819
电话:024-83687750 传真:024-23906316